DNA Binding Site

Accessions: ACAGCTGG (UniPROBE 20160601), MA0668.3.10 (JASPAR 2024), MA0668.3.14 (JASPAR 2024), MA0668.3.15 (JASPAR 2024), MA1109.2.13 (JASPAR 2024), MA1472.3.3 (JASPAR 2024), MA1619.2.4 (JASPAR 2024), MA1641.2.14 (JASPAR 2024), MA2170.1.1 (JASPAR 2024), MA2295.1.12 (JASPAR 2024), MA2295.1.4 (JASPAR 2024), UN0733.1.16 (JASPAR 2024)
Organisms: Mus musculus, Caenorhabditis elegans, Homo sapiens, Drosophila melanogaster
Libraries: UniPROBE 20160601 1, JASPAR 2024 2
1 Hume MA, Barrera LA, Gisselbrecht SS, Bulyk ML. UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein-DNA interactions. Nucleic Acids Res : (2015). [Pubmed]
2 Rauluseviciute I, Riudavets-Puig R, Blanc-Mathieu R, Castro-Mondragon JA, Ferenc K, Kumar V, Lemma RB, Lucas J, Cheneby J, Baranasic D, Khan A, Fornes O, Gundersen S, Johansen M, Hovig E, Lenhard B, Sandelin A, Wasserman WW, Parcy F, Mathelier A. JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles. Nucleic Acids Res : (2023). [Pubmed]
Length: 8
Sequence: ACAGCTGG
Type: Heterodimer
Binding TFs: UP00099A (Helix-loop-helix DNA-binding domain)
UP00357A (Helix-loop-helix DNA-binding domain)
UP00358A (Helix-loop-helix DNA-binding domain)
UP00361A (Helix-loop-helix DNA-binding domain)
UP00378A (Helix-loop-helix DNA-binding domain)
UP00381A (Helix-loop-helix DNA-binding domain)
UP00384A (Helix-loop-helix DNA-binding domain)
UP00387A (Helix-loop-helix DNA-binding domain)
Q13562 (Helix-loop-helix DNA-binding domain, Neuronal helix-loop-helix transcription factor )
Q9QYC3 (Helix-loop-helix DNA-binding domain)
Q9QX98 (Helix-loop-helix DNA-binding domain)
P13349 (Helix-loop-helix DNA-binding domain, Myogenic Basic domain, Myogenic determination factor 5)
Q62414 (Helix-loop-helix DNA-binding domain, Neuronal helix-loop-helix transcription factor )
P10083
P13349
Q10574
Q11094
Q13562
Q62414
Q9QX98
Q9QYC3
Binding Motifs: UP00099A_1 ytyarCAGCTGCtvytk
UP00357A_1 whyrATCAGCTGatsk
UP00358A_1 wAyyAwATwTrgmm
UP00361A_1 agwaaaawrwhdwr
UP00378A_1 ctwwramwwwmmaw
UP00381A_1 akwraTwagwaswm
UP00387A_1 ksrACAGCTGTyrwrr
UP00099A_2 bymwcCCcryccyrty
UP00358A_2 / UP00384A_3 yvsamCACCTGTTmcrg
UP00361A_2 / UP00384A_5 rrmsCAsCTGbGccmt
UP00378A_2 / UP00384A_6 kktrmCAksTGkymmh
UP00381A_2 / UP00384A_10 hmgamCAgcTGkymtc
MA0668.3 aCAGATGG
MA1109.2 aCAGATGG
MA1472.3 ACAGCTGT
MA1619.2 aCAGCTGt
MA1641.2 aCAGCTGt
MA2170.1 ACAGrTGk
MA2295.1 gCAGCTGc
UN0733.1 cCAGmTGg
Publications: Badis G, Berger M.F, Philippakis A.A, Talukder S, Gehrke A.R, Jaeger S.A, Chan E.T, Metzler G, Vedenko A, Chen X, Kuznetsov H, Wang C.F, Coburn D, Newburger D.E, Morris Q, Hughes T.R, Bulyk M.L. Diversity and complexity in DNA recognition by transcription factors. Science (New York, N.Y.) 324:1720-3 (2009). [Pubmed]

Fong AP, Yao Z, Zhong JW, Cao Y, Ruzzo WL, Gentleman RC, Tapscott SJ. Genetic and epigenetic determinants of neurogenesis and myogenesis. Dev Cell 22:721-35 (2012). [Pubmed]

Sharma A, Moore M, Marcora E, Lee JE, Qiu Y, Samaras S, Stein R. The NeuroD1/BETA2 sequences essential for insulin gene transcription colocalize with those necessary for neurogenesis and p300/CREB binding protein binding. Mol Cell Biol 19:704-13 (1999). [Pubmed]

Lo HG, Jin RU, Sibbel G, Liu D, Karki A, Joens MS, Madison BB, Zhang B, Blanc V, Fitzpatrick JA, Davidson NO, Konieczny SF, Mills JC. A single transcription factor is sufficient to induce and maintain secretory cell architecture. Genes Dev 31:154-171 (2017). [Pubmed]

Meredith DM, Borromeo MD, Deering TG, Casey BH, Savage TK, Mayer PR, Hoang C, Tung KC, Kumar M, Shen C, Swift GH, Macdonald RJ, Johnson JE. Program specificity for Ptf1a in pancreas versus neural tube development correlates with distinct collaborating cofactors and chromatin accessibility. Mol Cell Biol 33:3166-79 (2013). [Pubmed]

Conerly ML, Yao Z, Zhong JW, Groudine M, Tapscott SJ. Distinct Activities of Myf5 and MyoD Indicate Separate Roles in Skeletal Muscle Lineage Specification and Differentiation. Dev Cell 36:375-85 (2016). [Pubmed]

Portman DS, Emmons SW. The basic helix-loop-helix transcription factors LIN-32 and HLH-2 function together in multiple steps of a C. elegans neuronal sublineage 127:5415-26 (Development.). [Pubmed]

Nitta KR, Jolma A, Yin Y, Morgunova E, Kivioja T, Akhtar J, Hens K, Toivonen J, Deplancke B, Furlong EE, Taipale J. Conservation of transcription factor binding specificities across 600 million years of bilateria evolution. Elife : (2015). [Pubmed]

Disclaimer and license

These data are available AS IS and at your own risk. The EEAD/CSIC do not give any representation or warranty nor assume any liability or responsibility for the data nor the results posted (whether as to their accuracy, completeness, quality or otherwise). Access to these data is available free of charge for ordinary use in the course of research. Downloaded data have CC-BY-NC-SA license. FootprintDB is also available at RSAT::Plants, part of the INB/ELIXIR-ES resources portfolio.