DNA Binding Motif

Accessions: CcpA (DBTBS 1.0)
Names: CcpA
Organisms: Bacillus subtilis
Libraries: DBTBS 1.0 1
1 Sierro N, Makita Y, de Hoon M, Nakai K. DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information. Nucleic acids research 36:D93-6 (2008). [Pubmed]
Length: 13
Consensus: TGwAARCGbTwtC
Weblogo:
PSSM: P0 A C G T
01 0.01 0 0 0.99 T
02 0 0 1 0 G
03 0.52 0 0.11 0.37 w
04 0.92 0 0 0.08 A
05 0.89 0 0 0.11 A
06 0.26 0 0.74 0 R
07 0.03 0.97 0 0 C
08 0.01 0 0.93 0.06 G
09 0 0.41 0.31 0.28 b
10 0.19 0 0 0.81 T
11 0.31 0 0.15 0.54 w
12 0.24 0.15 0 0.60 t
13 0.22 0.75 0 0.03 C
Binding TFs: CcpA (Bacterial regulatory proteins, lacI family, Periplasmic binding proteins and sugar binding domain of LacI family, Periplasmic binding protein-like domain, Periplasmic binding protein domain)
Binding Sites: ackA_1
ackA_2
acoA_2
acoR
acsA_1
acuA_1
amyE_1
araA_3
araB
araE_3
bglP_1
bglS_1
ccpC_1
citM_1
citZ_1
cydA_1
dctP_1
dra_1
galT
glpF_1
gntR_1
hutP_2
hutP_3
ilvB_1
iolB
kdgA
lcfA
levD_1
licB_1
malA_1
mmgA_1
mmsA_1
msmX
phoP_1
pta_1
pta_2
rbsR_3
sigL
treP_1
uxaC_1
xylA_1
xynP_1
ydhO
yobO
yxjC_1
yxkJ
Publications: Grundy F.J, Waters D.A, Allen S.H, Henkin T.M. Regulation of the Bacillus subtilis acetate kinase gene by CcpA. Journal of bacteriology 175:7348-55 (1993). [Pubmed]

Miwa Y, Nakata A, Ogiwara A, Yamamoto M, Fujita Y. Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic acids research 28:1206-10 (2000). [Pubmed]

Ali N.O, Bignon J, Rapoport G, Debarbouille M. Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis. Journal of bacteriology 183:2497-504 (2001). [Pubmed]

Grundy F.J, Turinsky A.J, Henkin T.M. Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA. Journal of bacteriology 176:4527-33 (1994). [Pubmed]

Kim J.H, Guvener Z.T, Cho J.Y, Chung K.C, Chambliss G.H. Specificity of DNA binding activity of the Bacillus subtilis catabolite control protein CcpA. Journal of bacteriology 177:5129-34 (1995). [Pubmed]

Kim J.H, Yang Y.K, Chambliss G.H. Evidence that Bacillus catabolite control protein CcpA interacts with RNA polymerase to inhibit transcription. Molecular microbiology 56:155-62 (2005). [Pubmed]

Inácio J.M, Costa C, de Sá-Nogueira I. Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in Bacillus subtilis. Microbiology (Reading, England) 149:2345-55 (2003). [Pubmed]

Krüger S, Gertz S, Hecker M. Transcriptional analysis of bglPH expression in Bacillus subtilis: evidence for two distinct pathways mediating carbon catabolite repression. Journal of bacteriology 178:2637-44 (1996). [Pubmed]

Krüger S, Stülke J, Hecker M. Catabolite repression of beta-glucanase synthesis in Bacillus subtilis. Journal of general microbiology 139:2047-54 (1993). [Pubmed]

Kim H.J, Jourlin-Castelli C, Kim S.I, Sonenshein A.L. Regulation of the bacillus subtilis ccpC gene by ccpA and ccpC. Molecular microbiology 43:399-410 (2002). [Pubmed]

Kim H.J, Roux A, Sonenshein A.L. Direct and indirect roles of CcpA in regulation of Bacillus subtilis Krebs cycle genes. Molecular microbiology 45:179-90 (2002). [Pubmed]

Puri-Taneja A, Schau M, Chen Y, Hulett F.M. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD. Journal of bacteriology 189:3348-58 (2007). [Pubmed]

Asai K, Baik S.H, Kasahara Y, Moriya S, Ogasawara N. Regulation of the transport system for C4-dicarboxylic acids in Bacillus subtilis. Microbiology (Reading, England) 146 ( Pt 2):263-71 (2000). [Pubmed]

Darbon E, Servant P, Poncet S, Deutscher J. Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression. Molecular microbiology 43:1039-52 (2002). [Pubmed]

Miwa Y, Fujita Y. Promoter-independent catabolite repression of the Bacillus subtilis gnt operon. Journal of biochemistry 113:665-71 (1993). [Pubmed]

Chauvaux S, Paulsen I.T, Saier M.H. CcpB, a novel transcription factor implicated in catabolite repression in Bacillus subtilis. Journal of bacteriology 180:491-7 (1998). [Pubmed]

Wray L.V, Pettengill F.K, Fisher S.H. Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site. Journal of bacteriology 176:1894-902 (1994). [Pubmed]

Tojo S, Satomura T, Morisaki K, Deutscher J, Hirooka K, Fujita Y. Elaborate transcription regulation of the Bacillus subtilis ilv-leu operon involved in the biosynthesis of branched-chain amino acids through global regulators of CcpA, CodY and TnrA. Molecular microbiology 56:1560-73 (2005). [Pubmed]

Shivers R.P, Sonenshein A.L. Bacillus subtilis ilvB operon: an intersection of global regulons. Molecular microbiology 56:1549-59 (2005). [Pubmed]

Martin-Verstraete I, Stülke J, Klier A, Rapoport G. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon. Journal of bacteriology 177:6919-27 (1995). [Pubmed]

Tobisch S, Zühlke D, Bernhardt J, Stülke J, Hecker M. Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. Journal of bacteriology 181:6996-7004 (1999). [Pubmed]

Tobisch S, Glaser P, Krüger S, Hecker M. Identification and characterization of a new beta-glucoside utilization system in Bacillus subtilis. Journal of bacteriology 179:496-506 (1997). [Pubmed]

Yamamoto H, Serizawa M, Thompson J, Sekiguchi J. Regulation of the glv operon in Bacillus subtilis: YfiA (GlvR) is a positive regulator of the operon that is repressed through CcpA and cre. Journal of bacteriology 183:5110-21 (2001). [Pubmed]

Bryan E.M, Beall B.W, Moran C.P. A sigma E dependent operon subject to catabolite repression during sporulation in Bacillus subtilis. Journal of bacteriology 178:4778-86 (1996). [Pubmed]

Puri-Taneja A, Paul S, Chen Y, Hulett F.M. CcpA causes repression of the phoPR promoter through a novel transcription start site, P(A6). Journal of bacteriology 188:1266-78 (2006). [Pubmed]

Presecan-Siedel E, Galinier A, Longin R, Deutscher J, Danchin A, Glaser P, Martin-Verstraete I. Catabolite regulation of the pta gene as part of carbon flow pathways in Bacillus subtilis. Journal of bacteriology 181:6889-97 (1999). [Pubmed]

Woodson K, Devine K.M. Analysis of a ribose transport operon from Bacillus subtilis. Microbiology (Reading, England) 140 ( Pt 8):1829-38 (1994). [Pubmed]

Choi S.K, Saier M.H. Regulation of sigL expression by the catabolite control protein CcpA involves a roadblock mechanism in Bacillus subtilis: potential connection between carbon and nitrogen metabolism. Journal of bacteriology 187:6856-61 (2005). [Pubmed]

Gärtner D, Geissendörfer M, Hillen W. Expression of the Bacillus subtilis xyl operon is repressed at the level of transcription and is induced by xylose. Journal of bacteriology 170:3102-9 (1988). [Pubmed]

Jacob S, Allmansberger R, Gärtner D, Hillen W. Catabolite repression of the operon for xylose utilization from Bacillus subtilis W23 is mediated at the level of transcription and depends on a cis site in the xylA reading frame. Molecular & general genetics : MGG 229:189-96 (1991). [Pubmed]

Kraus A, Hueck C, Gärtner D, Hillen W. Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression. Journal of bacteriology 176:1738-45 (1994). [Pubmed]

Lindner C, Stülke J, Hecker M. Regulation of xylanolytic enzymes in Bacillus subtilis. Microbiology (Reading, England) 140 ( Pt 4):753-7 (1994). [Pubmed]

Galinier A, Deutscher J, Martin-Verstraete I. Phosphorylation of either crh or HPr mediates binding of CcpA to the bacillus subtilis xyn cre and catabolite repression of the xyn operon. Journal of molecular biology 286:307-14 (1999). [Pubmed]

Disclaimer and license

These data are available AS IS and at your own risk. The EEAD/CSIC do not give any representation or warranty nor assume any liability or responsibility for the data nor the results posted (whether as to their accuracy, completeness, quality or otherwise). Access to these data is available free of charge for ordinary use in the course of research. Downloaded data have CC-BY-NC-SA license. FootprintDB is also available at RSAT::Plants, part of the INB/ELIXIR-ES resources portfolio.